Source code for pyqubo.utils.solver

# Copyright 2018 Recruit Communications Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import neal
import numpy as np
from deprecated import deprecated


[docs]@deprecated(version='0.4.0', reason="You should use simulated annealing sampler of dwave-neal directly.") def solve_qubo(qubo, num_reads=10, sweeps=1000, beta_range=(1.0, 50.0)): """[deprecated] Solve QUBO with Simulated Annealing (SA) provided by neal. Args: qubo (dict[(label, label), float]): The QUBO to be solved. num_reads (int, default=10): Number of run repetitions of SA. sweeps (int, default=1000): Number of iterations in each run of SA. beta_range (tuple(float, float), default=(1.0, 50.0)): Tuple of start beta and end beta. Returns: dict[label, bit]: The solution of SA. Note: :func:`solve_qubo` is deprecated. Use `dwave-neal` package instead like below. >>> from pyqubo import Spin >>> import neal >>> s1, s2, s3 = Spin("s1"), Spin("s2"), Spin("s3") >>> H = (2*s1 + 4*s2 + 6*s3)**2 >>> model = H.compile() >>> bqm = model.to_bqm() >>> sa = neal.SimulatedAnnealingSampler() >>> sampleset = sa.sample(bqm, num_reads=10) >>> samples = model.decode_sampleset(sampleset) >>> best_sample = min(samples, key=lambda s: s.energy) >>> pprint(best_sample.sample) # doctest: +SKIP {'s1': 0, 's2': 0, 's3': 1} """ max_abs_value = float(max(abs(v) for v in qubo.values())) scale_qubo = {k: float(v) / max_abs_value for k, v in qubo.items()} sa = neal.SimulatedAnnealingSampler() sa_computation = sa.sample_qubo(scale_qubo, num_reads=num_reads, num_sweeps=sweeps, beta_range=beta_range) best = np.argmin(sa_computation.record.energy) best_solution = list(sa_computation.record.sample[best]) return dict(zip(sa_computation.variables, best_solution))
[docs]@deprecated(version='0.4.0', reason="You should use simulated annealing sampler of dwave-neal directly.") def solve_ising(linear, quad, num_reads=10, sweeps=1000, beta_range=(1.0, 50.0)): """[deprecated] Solve Ising model with Simulated Annealing (SA) provided by neal. Args: linear (dict[label, float]): The linear parameter of the Ising model. quad (dict[(label, label), float]): The quadratic parameter of the Ising model. num_reads (int, default=10): Number of run repetitions of SA. sweeps (int, default=1000): Number of iterations in each run of SA. beta_range (tuple(float, float), default=(1.0, 50.0)): Tuple of start beta and end beta. Note: :func:`solve_ising` is deprecated. Use `dwave-neal` package instead like below. >>> from pyqubo import Spin >>> import neal >>> s1, s2, s3 = Spin("s1"), Spin("s2"), Spin("s3") >>> H = (2*s1 + 4*s2 + 6*s3)**2 >>> model = H.compile() >>> bqm = model.to_bqm() >>> sa = neal.SimulatedAnnealingSampler() >>> sampleset = sa.sample(bqm, num_reads=10) >>> samples = model.decode_sampleset(sampleset) >>> best_sample = min(samples, key=lambda s: s.energy) >>> pprint(best_sample.sample) # doctest: +SKIP {'s1': 0, 's2': 0, 's3': 1} """ max_abs_value = float(max(abs(v) for v in (list(quad.values()) + list(linear.values())))) scale_linear = {k: float(v) / max_abs_value for k, v in linear.items()} scale_quad = {k: float(v) / max_abs_value for k, v in quad.items()} sa = neal.SimulatedAnnealingSampler() sa_computation = sa.sample_ising(scale_linear, scale_quad, num_reads=num_reads, num_sweeps=sweeps, beta_range=beta_range) best = np.argmin(sa_computation.record.energy) best_solution = list(sa_computation.record.sample[best]) return dict(zip(sa_computation.variables, best_solution))